Forschung
Aktuelle Projekte

Aktuelle Forschungsprojekte des Instituts für Werkstoffkunde

Biomedizintechnik und Leichtbau

  • Aluminiumlegierungen mit angepasstem Schmelzintervall für das prozessintegrierte Ausschäumen beim Strangpressen
    Ziel dieses Projekts ist es, die Grundlagen zum direkten Ausschäumen von Hohlstrukturen aus Al-Legierungen mittels Verbundstrangpressen zu erarbeiten. Der außenliegende strukturgebende Konstruktionswerkstoff übernimmt hierbei die Krafteinleitung, den Korrosionsschutz sowie Zugkräfte, während der innenliegende Schaumwerkstoff die Biegesteifigkeit, Dämpfungseigenschaften und Energieabsorption erhöht. Solche stranggepressten, ausgeschäumten Strukturen können z. B. vorteilhaft im Automobilbau als Crashprofile eingesetzt werden. Prozessintegriert ausgeschäumte Strukturen bzw. Schaumstrukturen mit dichter Decklage werden, ungeachtet ihres besonderen Eigenschaftsspektrums, bisher noch nicht industriell in Großserie eingesetzt. Dies ist zum einen der begrenzten Gestaltungsfreiheit bei der Herstellung ausgeschäumter Bauteile mit dichten Decklagen geschuldet, andererseits werden bei der Herstellung bisher aufwändige Zusatzoperationen wie zusätzliche Schäum-, Manipulations- und Verbindungsprozesse benötigt.
    Jahr: 2018
    Förderung: DFG
    Laufzeit: 05/2017-05/2020

Technologie der Werkstoffe

  • Untersuchung der Mikromechanismen des elektroplastischen Effekts in Magnesiumlegierungen mittels Elektronenmikroskopie
    Für Magnesiumlegierung ist die Nutzung des elektro-plastische Effektes besonders attraktiv, da hier aufgrund des hexagonal dichtest gepackten Gitters, d.h. der eingeschränkten Zahl der Gleitsysteme, eine schlechte Umformbarkeit bei Raumtemperatur vorliegt. Ziel dieses Forschungsprojekts ist es, die Mikromechanismen des elektro-plastischen Effektes am Beispiel von Reinmagnesium und Magnesiumlegierungen mittels elektronenmikroskopischer Methoden grundlegend zu verstehen.
    Jahr: 2020
    Förderung: DFG
    Laufzeit: 01/2020-12/2022
  • Untersuchung des Kaltpressschweißens unter XHV-adäquater Atmosphäre im Prozess des Walzplattierens
    Das Walzplattieren ist ein Verfahren zur Herstellung von Werkstoffverbunden basierend auf einer Adhäsionsverbindung zwischen zwei oder mehreren Blechen. Mögliche Materialkombinationen sind jedoch insbesondere beim Kaltplattieren eingeschränkt. Innerhalb des Projektes wird deshalb die Verbunderzeugung unter vollständiger Sauerstofffreiheit erforscht. So wird die Ausbildung passivierender Oxidschichten zwischen den Verbundpartnern verhindert und die Verbundqualität signifikant verbessert.
    Jahr: 2020
    Förderung: SFB 1368 TP A05
    Laufzeit: Förderung seit 2020
  • Lebensdauergerechte Prozessauslegung für die Herstellung von blechmassivumgeformten Bauteilen
    Durch hohe und lokal unterschiedliche Umformgrade bei Blechmassivumformprozessen wird neben der Kaltverfestigung auch eine duktile Schädigung in Form von Poren in der Mikrostruktur eingebracht, die das Ermüdungsverhalten maßgeblich beeinflusst. Dies erfordert eine lebensdauergerechte Prozessauslegung, welche innerhalb dieses Projektes anhand einer Demonstrator-Hohlwelle untersucht wird.
    Jahr: 2019
    Förderung: DFG
    Laufzeit: 01/2019-12/2020
  • Patientenadaptives Drucküberwachungs- und Behandlungssystem zur Glaukomtherapie
    Der Schwerpunkt des Projektes besteht in der Entwicklung eines Aktors zur Einstellung der Öffnungsweite eines Glaukom-Implantats zur Regulierung des Augeninnendruckes. Zu diesem Zweck sollen zwei Formgedächtnislegierungen, von denen eine einen thermischen und die andere einen magnetischen Formgedächtniseffekt aufweist, zum Einsatz kommen. Das Konzept des Aktors soll die beiden Formgedächtnisphänomene nutzen, um das Öffnen und Schließen des Aktors zu ermöglichen.
    Jahr: 2018
    Förderung: AiF-ZIM
    Laufzeit: 12/2018-04/2020
  • Tailored Tempering von 7xxx-Aluminiumlegierungen
    Ziel des Projekts „Tailored Tempering“ ist die Entwicklung einer maßgeschneiderten Wärmebehandlung zur Erzeugung belastungsangepasster Bauteile für den Karosseriebau aus hochfesten Aluminiumlegierungen der 7xxx-Reihe. Duktile und hochfeste Bereiche in einem Bauteil werden mit einer stufigen Wasser-Luft-Sprayabkühlung des Bleches vor dem Tiefziehen im W-Zustand und anschließendem Warmauslagern erzeugt. Projektbegleitend werden mechanische und Spannungsrisskorrosionsuntersuchungen durchgeführt.
    Jahr: 2018
    Förderung: AiF-FOSTA
    Laufzeit: 09/2018-08/2020
  • Einstellung von Mikrostruktur und Degradationsverhalten oxidpartikelmodifizierter Fe-Legierungen durch selektives Elektronenstrahlschmelzen
    Resorbiere Implantate müssen eine Vielzahl verschiedener Anforderungen erfüllen. Neben einer hohen strukturellen Tragfähigkeit ist auch die gezielte Anpassung der Degradationsrate erforderlich. Mit Hilfe additiver Fertigungsverfahren sollen auf Basis spezieller Erschmelzungs- und Erstarrungsprozesse neuartige Legierungen auf Eisenbasis hergestellt werden die eine gezielte Einstellung der Degradationsrate ermöglichen.
    Jahr: 2019
    Förderung: DFG
    Laufzeit: 01/2019-12/2020
  • Entwicklung eines 3D-Modells zur Beschreibung der Mikrostrukturentwicklung in Nickelbasis-Superlegierungen bei starker thermo-mechanischer und thermo-chemischer Kopplung
    In Kooperation mit dem Institut für Kontinuumsmechanik (IKM) soll ein Modell entwickelt werden, das das Verhalten der Mikrostruktur von Nickelbasis-Superlegierungen bei Kriechbelastung beschreibt. Es werden Kriechversuche durchgeführt und die Änderungen der Mikrostruktur mittels DIC (Digital Image Correlation) und Orientierungsmessungen verfolgt, welche sowohl im Rasterelektronenmikroskop, als auch dreidimensional im Röntgenmikroskop (mit DCT, Diffraction Contrast Tomography) durchgeführt werden.
    Jahr: 2019
    Förderung: DFG
    Laufzeit: 01/2019-12/2020
  • Ganzheitliche Modellierung des Kurzzeitanlassens im Prozess des induktiven Randschichthärtens
    Durch das induktive Kurzzeitanlassen ist eine Flexibilisierung bestehender Prozessketten des Induktionshärtens bei gleichbleibender Produkt- und Prozessqualität realisierbar. Durch die im Vorhaben untersuchte nummerische Prozessauslegung kann der experimentelle Aufwand zur Ermittlung von werkstoff- und geometriespezifischen Induktionsanlassparametern deutlich reduziert und somit die Attraktivität dieser innovativen Anlasstechnologie gesteigert werden.
    Jahr: 2018
    Förderung: AiF-FOSTA
    Laufzeit: 03/2018-08/2020
  • Microstructure-Functional Behavior-Relationships in High Entropy Shape Memory Alloys
    Um die Funktionalität und das Ermüdungsverhalten von Formgedächtnislegierungen zu verbessern werden hochtropische Formgedächtnislegierungen mit equiatomarer Zusammensetzung entwickelt. Diese sollen martensitische Umwandlungen in hohen Temperaturregimen ermöglichen und eine hohe Reversibilität aufweisen. Hierfür wird ein grundlegendes Verständnis über Ausscheidungen innerhalb der Mikrostrukturen solcher Legierungen und ihr Verhalten auf äußere Lasten sowie Wärmebehandlungen gebildet.
    Jahr: 2018
    Förderung: DFG
    Laufzeit: 01/2018-12/2020
  • Präzisionsschmieden gegossener Vorformen
    Die Technologie des Schmiedens von gegossenen Vorformen (Gieß-Schmieden) stellt eine Alternative zur konventionellen Herstellung von Stahlbauteilen mit komplexen Geometrien dar. Hauptziel der geplanten Untersuchungen ist die Gewinnung von Erkenntnissen über die Entwicklung der mechanischen und mikrostrukturellen Eigenschaften des Gefüges der Gussvorform während der Umformung und die Identifizierung von geeigneten Prozessparametern.
    Jahr: 2018
    Förderung: DFG
    Laufzeit: 10/2018-12/2020
  • Erhöhung der Verschleißbeständigkeit von Schmiedewerkzeugen durch Einsatz eines intelligenten Warmarbeitsstahls in Kombination mit einer werkstoffspezifisch angepassten Nitrierbehandlung
    Am Warmarbeitsstahl 1.2365 mit einem zusätzlichen Masseanteil von 2% Mangan und 1,5% Nickel wird die Austenitstarttemperatur (Ac1b- Temperatur) gezielt gesenkt, sodass während des Schmiedeprozesses infolge der thermomechanischen Bedingungen eine wiederkehrende zyklische Randschichthärtung gebildet wird (siehe Bild 1). An thermomechanisch geringer belasteten Bereichen, an denen keine Neuhärtung eintritt, trägt die Nitrierschicht zum Verschleißschutz des Schmiedewerkzeugs bei.
    Jahr: 2017
    Förderung: AiF-FOSTA
    Laufzeit: 10/2017-06/2020
  • Steigerung technologischer Eigenschaften durch Kryobehandlung von Werkzeugstählen „Nanocarbide“
    Bei der Wärmebehandlung von hochlegierten Werkzeugstählen ist die Kryobehandlung, d.h. das Herunterkühlen des Werkstücks auf die Temperatur des flüssigen Stickstoffs, eine Zusatzbehandlung in der Wärmebehandlungskette Vergüten, mit der die Verschleißbeständigkeit und Zähigkeit von Stählen verbessert werden kann. Durch die Anwendung einer Kryobehandlung wird zum einen Restaustenit in Martensit umgewandelt und zum anderen eine homogenere Verteilung von Karbiden erzielt.
    Jahr: 2017
    Förderung: AiF-FOSTA
    Laufzeit: 01/2017-06/2020
  • Wärmebehandlung für belastungsangepasste Werkstoffeigenschaften von Tailored-Forming-Komponenten
    Das Teilprojekt A2 des SFB 1153 (Prozesskette zu Herstellung hybrider Hochleistungsbauteile durch Tailored Forming) umfasst die Entwicklung von Wärmebehandlungsstrategien, um in den erzeugten Werkstoffverbunden lokale Eigenschaften wie Härte, Festigkeit und Duktilität gezielt einzustellen. Zur Erhöhung der Lebensdauer der Werkstoffverbunde wird der Einfluss unterschiedlicher Wärmebehandlungen auf das Tailored-Forming-spezifische Ermüdungsverhalten untersucht.
    Jahr: 2019
    Förderung: SFB 1153 TP A2
    Laufzeit: 07/2019-06/2023
  • Ermüdungsverhalten von blechmassivumgeformten Bauteilen
    Im Rahmen des SFB TR 73 werden im Teilprojekt C6 das Ermüdungsverhalten von blechmassivumgeformten Bauteilen untersucht. Dabei wirken Fehlstellen in der Mikrostruktur, die durch die hohen Umformgrade bei diesen Umformprozessen entstehen bzw. wachsen, als mögliche Rissinitiatoren und beeinflussen so die Lebensdauer. Ziel ist es, anhand von Ermüdungsexperimenten, Rissfortschrittsmessungen und der Analyse mikrostruktureller Defekte die Lebensdauer blechmassivumgeformter Bauteile zu berechnen.
    Jahr: 2013
    Förderung: SFB TR 73 TP C6
    Laufzeit: 07/2013-12/2020
    IW592 Ermüdunsverhalten von blechmassivumgeformten Bauteilen IW592 Ermüdunsverhalten von blechmassivumgeformten Bauteilen
  • Analyse der belastungspfadabhängigen Schädigungs- und Mikrostrukturentwicklung zur numerischen Auslegung von Blech-Massiv-Umformprozessen
    Zur numerischen Berechnung etwaiger Schädigung in von mittels Blech-Massiv-Umformung gefertigten Bauteilen mit Funktionselementen erfolgte eine Analyse der belastungspfadabhängigen Schädigungs- und Mikrostrukturentwicklung der Werkstoffe DC04 und DP600 (IW) auf Basis gekoppelter Schädigungsmodelle (IUL, TU Dortmund). Diese dient dazu, geeignete Prozessfenster für komplexe mehrschrittige Blech-Massiv-Umformprozesse vorherzusagen.
    Jahr: 2013
    Förderung: SFB TR 73 TP C4
    Laufzeit: 01/2013-12/2020

SFB 871 Produkt-Regeneration

  • SFB871: Endkonturnahe Turbinenschaufelreparatur durch füge- und beschichtungstechnische Hybridprozesse (Teilprojekt B1)
    Komponenten in Flugzeugtriebwerken und stationären Gasturbinen, wie Turbinen- und Verdichterschaufeln (Lauf- und Leitschaufeln) sind extremen Bedingungen ausgesetzt. Um die Lebensdauer solcher Komponenten zu erhöhen, spielen Wartung, Reparatur und Überholen (MRO) eine immer größer werdende Rolle. Das Teilprojekt B1 des SFB871 entwickelt und erforscht eine endkonturnahe füge- und beschichtungstechnische Hybridtechnologie, mit der es möglich ist, die dem aktuellen Stand der Technik entsprechende Prozesskette zur Turbinenschaufelreparatur wesentlich zu verkürzen. Die in diesem Teilprojekt entwickelte Hybridtechnologie bezieht sich auf Turbinenschaufeln der Hochdruckturbine, sodass der Fokus von der werkstoffwissenschaftlichen Seite auf Nickelbasislegierungen liegt. Die Verkürzung der Prozesskette wird bewerkstelligt, indem das zur Reparatur benötigte Nickelbasislot zusammen mit der Heißgaskorrosionsschutzschicht (z.B. NiCoCrAlY-Legierungen) und der Wärmedämmschicht (WDS) mit Aluminium als Haftvermittler durch thermisches Spritzen (TS) auf das zu reparierende Substrat (Bauteil) appliziert wird. Es ergibt sich folgende Materialkombination: Substrat/Nickelbasislot/NiCoCrAlY/Al/WDS. Anschließend wird dieses Werkstoffsystem einer gemeinsamen Wärmebehandlung unterzogen und so ein kombinierter Löt-/Alitierprozess ermöglicht. Somit ist die Arbeitshypothese dieses Forschungsvorhabens, einen thermischen Beschichtungs- und Fügeprozess in einen gemeinsamen integrierten Hybridprozess überführen zu können und dabei sowohl qualitative als auch wirtschaftliche Vorteile zu erzielen
    Jahr: 2018
    Förderung: DFG
    Laufzeit: 01/2018 – 12/2021
  • SFB871: Endkonturnahe Turbinenschaufelreparatur durch füge- und beschichtungstechnische Hybridprozesse (Teilprojekt B1)
    Ziel des Forschungsvorhabens ist die Kombination des Reparaturlötens mit der Heißgaskorrosionsschutzbeschichtung in einem gemeinsam integrierten Prozess, um die dem Stand der Technik entsprechende Prozesskette zur Turbinenschaufelreparatur zu verkürzen. Sowohl die Lotapplikation als auch die Heißgaskorrosionsschutzbeschichtung erfolgt durch thermisches Spritzen. Der Werkstoffaufbau soll dadurch weitestgehend endkonturnah realisiert werden. Die thermischen Spritzprozesse sollen so geführt werden, dass der Lötprozess im CVD-Diffusionsglühprozess (Chemical Vapor Depostition) als TLP-Bonding-Prozess (Transient Liquid Phase) integriert und somit als eigenständiger Prozess entfallen kann. Somit ist die Arbeitshypothese des Forschungsvorhabens, einen thermischen Beschichtungs- und einen Fügeprozess in einen gemeinsamen integrierten Hybridprozess überführen zu können und dabei sowohl qualitative als auch wirtschaftliche Vorteile zu erzielen. Die Bedeutung dieser Verfahrenskombination liegt in der Reduzierung an Schleifaufwand sowie in der Einsparung des bisher eigenständigen Vakuumlötprozesses und somit in verringerten Fertigungskosten.
    Jahr: 2017

SFB 1153 Tailored Forming

  • SFB 1153 – Teilprojekt A1: Einfluss der lokalen Mikrostruktur auf die Umformbarkeit stranggepresster Werkstoffverbunde
    Das Teilprojekt beschäftigt sich mit der Weiterentwicklung von Verbundstrangpressverfahren für die Herstellung hybrider Halbzeuge für die Massivumformung. Einerseits sollen verschiedene Werkstoffkombinationen zu hybriden Hohlprofilen für eine Anwendung in der Tailored-Forming-Prozesskette zur Herstellung einer Lagerbuchse gefertigt werden. Andererseits soll ein Prozess entwickelt werden, der die Herstellung eines asymmetrisch verstärkten Halbzeugs für das Demonstrator-Bauteil „Querlenker“ ermöglicht.
    Jahr: 2019
    Förderung: DFG
    Laufzeit: 07/2019-06/2023
  • SFB 1153 – Teilprojekt A2: Wärmebehandlung für belastungsangepasste Werkstoffeigenschaften von Tailored Forming-Komponenten
    Im Rahmen des Sonderforschungsbereichs 1153 „Tailored Forming“ werden im Teilprojekt Wärmebehandlungsstrategien für Tailored Forming-Komponenten entwickelt. Ziel ist dabei eine lokale Anpassung der Werkstoffeigenschaften. Neben dieser lokalen Anpassung der mechanischen Eigenschaften sollen zudem die Erwärmung- und Abkühlvorgänge über die gesamte Prozesskette betrachtet und dabei Zielkonflikte zwischen Umform- und Wärmebehandlungsparametern aufgelöst werden. Da die Verbundzone der Fügepartner die entscheidende Herausforderung darstellt, kommt der Analyse ihrer Entwicklung (Schichtdicke, mikrostrukturelle Zusammensetzung) in allen Prozessschritten eine besondere Bedeutung zu. Um die Wärmebehandlung zu realisieren, wird eine auf Induktionserwärmung und Luft-Wasser Spraykühlung basierende Temperierungsanlage Entwickelt (siehe Abb. 1). Im Nachgang an das Härten der Stahl-Funktionsflächen kann dann eine simultane Wärmebehandlung von Stahl-Aluminium-Verbunden über verschiede Routen entwickelt und analysiert werden (Abb.2)
    Jahr: 2015
    Förderung: DFG
    Laufzeit: 07/2015 - 06/2019

SFB/TRR 73 Blechmassivumformung

  • Ermüdungsverhalten von blechmassivumgeformten Bauteilen
    Im Rahmen des SFB TR 73 werden im Teilprojekt C6 das Ermüdungsverhalten von blechmassivumgeformten Bauteilen untersucht. Dabei wirken Fehlstellen in der Mikrostruktur, die durch die hohen Umformgrade bei diesen Umformprozessen entstehen bzw. wachsen, als mögliche Rissinitiatoren und beeinflussen so die Lebensdauer. Ziel ist es, anhand von Ermüdungsexperimenten, Rissfortschrittsmessungen und der Analyse mikrostruktureller Defekte die Lebensdauer blechmassivumgeformter Bauteile zu berechnen.
    Jahr: 2013
    Förderung: SFB TR 73 TP C6
    Laufzeit: 07/2013-12/2020
    IW592 Ermüdunsverhalten von blechmassivumgeformten Bauteilen IW592 Ermüdunsverhalten von blechmassivumgeformten Bauteilen
  • SFB TR73 - Teilprojekt C4: Analyse der belastungspfadabhängigen Schädigungs- und Mikrostrukturentwicklung zur numerischen Auslegung von Blech-Massiv-Umformprozessen
    Der Prozess der Blech‐Massiv‐Umformung soll die Herstellung von Bauteilen mit Funktionselemente aus Feinblech‐Halbzeugen ermöglichen. Aufgrund komplexer Belastungspfade und Umformsequenzen muss in diesem Projekt ein neuer Ansatz zur Vorhersage der Werkstoffschädigung und Restbelastbarkeit entwickelt werden.
    Jahr: 2011
    Förderung: DFG
    Laufzeit: 01/2013 - 12/2020

School for Additive Manufacturing (SAM)

  • Process-integrated self-regulation of the Wire and Arc Additive Manufacturing (WAAM) process to produce graded designed materials
    How can the WAAM printer learn the height offset from its own process data in order to generate fully automatic three-dimensional graded designed components? In the future, a process-dependent variable for working in the third dimension can be extracted from the arc process itself. The self-regulating process becomes intelligent! The traditional approach of slicing can be transferred by the development of a point-to-point control to the robot based WAAM technology in kind of a self-controlled process to vary the possibilities to produce special designed materials
    Jahr: 2020
    Förderung: Lower Saxony Ministry for Science and Culture
  • Degradation behaviour of additively manufactured components with local functional properties
    Additively manufactured components with integrated functional areas or density gradients lead to the challenge that these may have a negative influence on important technological properties such as mechanical strength or corrosion resistance. Therefore, a comprehensive characterization of the property profile of functional components is required in order to establish the relationship between local microstructural features and degradation behaviour under mechanical load. With these data, additively manufactured functional components can be developed with regard to their intended field of application.
    Jahr: 2020
    Förderung: Lower Saxony Ministry for Science and Culture

SFB Regeneration

  • FOR1766 – Teilprojekt TP4: Hochtemperatur-Formgedächtnislegierungen – Von den Grundlagen zur Anwendung
    Neue Legierungen werden in der Industrie nur verwendet, wenn deren Verhalten unter Betriebsbedingungen exakt vorhergesagt werden kann. Daher ist die Entwicklung neuer kostengünstiger Hochtemperatur-Formgedächtnislegierungen nicht das einzige Ziel der Forschergruppe. Vielmehr sollen die neuen Legierungen vollständig charakterisiert werden, um eine vollständige Datenbank zu generieren und um Modelle zu entwickeln, die die Lücke zwischen atomarer und makroskopischer Ebene überbrücken. Dafür werden zyklische Experimente zur funktionellen Degradation der Legierungen sowie detaillierte Untersuchungen hinsichtlich der Mikrostruktur durchgeführt.
    Jahr: 2015
    Förderung: DFG
    Laufzeit: bis 10.2018

[nicht kategorisiert]

  • SPP 1640 – Teilprojekt A4: Elektrochemisch unterstütztes Fügen blechförmiger Werkstoffe
    Kurzbeschreibung: Im Rahmen des Forschungsvorhabens soll ein innovatives umformtechnisches Fügeverfahren grundlegend untersucht werden, das elektrochemisch unterstützte Fügen (ECUF). Durch den Einsatz eines inkrementellen Wirkprinzips zusammen mit einer speziellen elektrochemischen Inline-Vorbehandlung sollen bestehende Restriktionen von Pressschweißverfahren hinsichtlich der Flexibilität, möglicher Materialkombinationen oder auch Fügestellengeometrien überwunden werden. Die Charakterisierung und Analyse der hergestellten Verbindung ist die Grundlage für eine gezielte Anpassung und Weiterentwicklung des Fügeprozesses und seiner Parameter. Mit diesem neuen Fügeverfahren soll eine Erweiterung des Anwendungsspektrums im Hinblick auf die effiziente Herstellung partiell verbundener Leichtbaustrukturen aus metallischen Werkstoffen erreicht werden.
    Jahr: 2015
    Förderung: DFG
    Laufzeit: bis 31/12/18
  • Induktionswärmetechnik als praxisrelevantes Vor- und Nachbehandlungsverfahren zur Verbesserung der Schweißnahtqualität beim Unterwasserschweißen von Feinkornstählen mit erhöhtem Kohlenstoffäquivalent
    Ziel des Forschungsprojektes ist die Erarbeitung einer effektiven Alternative zur aufwändigen Temper-Bead-Technik, um höherfeste Stähle und Feinkornbaustähle mit einem Kohlenstoffäquivalent von CEV > 0,4 hyperbar nass schweißbar zu machen. Dabei sollen der Wasserstoffgehalt und das Gefüge kontrollierbar werden.
    Jahr: 2019
    Förderung: AiF
    Laufzeit: 01.07.2018 - 30.06.2020
  • Wirkmechanismen von Nanopartikeln als neuartige Kornfeiner für thermomechanisch hoch beanspruchte Aluminiumgussbauteile
    Ziel des Forschungsvorhabens ist die gezielte Untersuchung des Einsatzes von Nanopartikeln unterschiedlicher Größe und Zusammensetzung als Kornfeiner bei siliziumhaltigen Al-Gusslegierungen, sowie die quantitative und qualitative Bewertung der Auswirkung der kornfeinenden Wirkung auf das Gefüge und die thermomechanischen Eigenschaften.
    Jahr: 2018
    Förderung: DFG
    Laufzeit: 05/2017 – 04/2020
  • Erzeugung von Bereichen mit reduzierter Festigkeit an formgehärteten Bauteilen mittels einer Temperierungsstation
    Das Projekt soll die Methodik einer lokalen Temperierung austenitisierter Werkstoffe vor oder zwischen einzelnen Umformschritten zur gezielten Einstellung einer erwünschten Mikrostruktur in eine praxisnahe Anwendung am Beispiel des Formhärtens überführen. Mittels der Technologie einer Zweiphasenspraykühlung sollen in Zusammenarbeit mit dem Kooperationspartner, der Volkswagen AG, gradierte Materialeigenschaften in Formhärtebauteilen basierend auf lokal an¬gepassten Mikrostrukturen erzielt werden. Formgehärtete Bauteile, die Bereiche mit lokal reduzierter Festigkeit aufweisen, zeigen eine gesteigerte Fügbarkeit und erleichtern den Beschnitt. Im beantragten Transferprojekt soll die Mikrostrukturanpassung durch eine gezielte Vorkühlung lokal begrenzter Bauteilbereiche vor dem eigentlichen Formhärtevorgang erfolgen. Zur Auslegung einer derartigen Vorkühlung mittels Zweiphasenspray und einer gleichzeitigen Temperierung nicht zu kühlender Bauteilbereiche auf Temperaturen oberhalb Ac3 soll eine geeignete Temperierungs¬einheit entwickelt werden. Dazu kann auf numerische Simulationsmodelle und Erfahrungen aus dem laufenden Projekt zurückgegriffen werden. In den vorgekühlten Bereichen soll zunächst eine Temperatur im Bereich der Bainitstufe oder ggf. Perlitstufe eingestellt werden, um vorzugsweise eine bainitische Gefügeumwandlung während der anschließenden gleichförmigen Abkühlung im Formhärtewerkzeug zu erzeugen. Bereiche, die aus einem Temperaturniveau oberhalb von Ac3 abgeschreckt werden, erfahren durch die Abkühlung im Formhärtewerkzeug hingegen eine martensitische Umwandlung. Als Beispiel ist in der Abb. 1 der mögliche Härteunterschied infolge der verschiedenen Temperaturführungen gezeigt. Vorteilhaft bei dieser Vorgehensweise ist, dass keine lokal temperierten Formhärtewerkzeuge erforderlich sind und sich kurze Haltezeiten beim Formhärten realisieren lassen. Letztendlich soll die praxis¬taugliche Einsatzfähigkeit der Temperierungsstation für die lokale Ausbildung von unterschiedlichen Gefügen durch lokale Abkühlung bei gleichzeitiger lokaler Aufrechterhaltung des austenitisierten Zustands der Platinen, nachgewiesen werden. Seitens der Leibniz Universität Hannover erfolgen die Auslegung der Temperierungsstation und das Formhärten am Institut für Umformtechnik und Umformmaschinen und die Entwicklung der Vorkühlvorrichtung und die Mikrostrukturcharakterisierung am Institut für Werkstoffkunde.
    Jahr: 2018
    Förderung: DFG
    Laufzeit: 01/07/2017 – 30/06/2019
  • Innovative Mischbauweisen mit dünnwandigen Aluminiumdruckguss-Strukturen mittels Bolzensetzen und fließlochformenden Schrauben
    Aluminiumgussbauteile finden aufgrund ihres spezifischen Gewichts, ihrer hohen Steifigkeit und der individuellen Formgestaltung eine immer stärkere Anwendung. Eine Voraussetzung für den Einsatz dieser Gussbauteile in Mischbaustrukturen mit Aluminium- oder Stahlblechen ist die Anwendung einer geeigneten Verbindungstechnik. Aufgrund der Individualität in der Formgebung liegt bei diesen Bauteilen häufig eine nur einseitige Zugänglichkeit zur Fügestelle vor. Fügeverfahren welches das einseitige Fügen von Aluminiumgussbauteilen ermöglichen sind z.B. das fließlochformende Schrauben und das Bolzensetzen. Bei Verfahren mit einseitig zugänglicher Fügestelle ist die lokale Fügestellensteifigkeit von entscheidender Bedeutung. Diese kann bei Gussbauteilen lokal sehr unterschiedlich sein. So ergeben Hohlbereiche geringe Steifigkeiten, hingegen Fügestellen zwischen Verrippungen erhöhte Steifigkeiten. Verminderte Fügestellensteifigkeiten erschweren die Verbindungsherstellung und führen zu Bauteildeformationen, zu Spalten zwischen den Fügepartnern sowie beim hybriden Fügen zu einer schlechteren Klebstoffanbindung. Grund dafür sind die im Fügeprozess statisch oder schlagartig eingebrachten Fügekräfte. Um die beschriebene Problemstellung zu lösen, wird ein ganzheitlicher Lösungsansatz zur Auslegung und fügegerechten Gestaltung von Gussbauteilen verfolgt, welcher es in einer frühen Phase der Konstruktion und Fertigungsplanung ermöglicht, Bauteile den Fügeverfahren mit einseitiger Zugänglichkeit entsprechend fügegerecht zu gestalten und Fertigungsabläufe besser zu planen. Die Projektergebnisse können in der Konstruktion von Gussbauteilen genutzt werden, um diese für die einseitigen Fügeverfahren optimiert zu entwickeln. Das zu entwickelnde Musterbauteil kann bei KMU und OEMs in frühen Phasen der Produktentwicklung, genutzt werden, um eine Bemusterung in Abhängigkeit der Bauteilsteifigkeit durchzuführen und den Einfluss von fertigungsbedingten Störgrößen zu untersuchen. Projektpartner: Universität Paderborn, Laboratorium für Werkstoff- und Fügetechnik (LWF)
    Jahr: 2018
    Förderung: AiF
    Laufzeit: 01.01.2017 - 30.06.2019
  • Dynamische Magnet-Datenspeicherung auf thermisch gespritzten Schichten
    Ziel des Projekts ist die Herstellung und Charakterisierung thermischer Spritzschichten mit magnetischen Eigenschaften mit Hinblick auf eine dynamische Datenspeicherung. Es soll untersucht werden, ob der Anwendungsbereich etablierter Schichtsysteme (z. B. WCCo(Cr)) als Hartschicht oder als Korrosionsschutz durch eine zusätzliche Funktionalisierung in Form von magnetischer Datenspeicherung erweitert werden kann. Zusätzlich soll der alternative in der Spritztechnik bisher nicht verwendete ferrimagnetische Werkstoff Maghemit (ɣ-Fe2O3) auf seine Tauglichkeit als Spritzwerkstoff untersucht werden. Auf diesen Ergebnissen aufbauend erfolgt im Weiteren die Ergründung und Quantifizierung der magnetischen Eigenschaften der hergestellten Spritzschichten.
    Jahr: 2018
    Förderung: DFG
    Laufzeit: 01/2017-12/2019
  • Forschungsvorhaben P 1197 (AiF-Nr. 18157N): Eigenspannungen gelöteter Stahlmischverbindungen
    Eine Vielzahl von Komponenten -beispielsweise für Kraftfahrzeuge, Anlagen der Energie- und Heizungstechnik oder im allgemeinen Anlagenbau- wird mit löttechnischen Fertigungsverfahren produziert. Viele dieser Bauteile werden aus hochlegierten Stahlwerkstoffen gefertigt, die in Vakuum- oder Schutzgasöfen bei Temperaturen oberhalb von 900°C gelötet werden. Für eine Reihe von Anwendungen ist es wünschenswert, ferritische und austenitische Stahlwerkstoffe miteinander zu fügen. Aufgrund der unterschiedlichen thermomechanischen Eigenschaften der Fügepartner und der verwendeten Lote können hierbei erhebliche Eigenspannungen auftreten, die zu einer signifikanten Schwächung dieser Lötverbindungen im Vergleich zu Lötverbindungen aus artgleichen Stahlwerkstoffen führen. Im Rahmen dieses Projektes werden die Eigenspannungen in Abhängigkeit von den gewählten Werkstoffkombinationen, den Fügegeometrien und den Prozessbedingungen beim Ofenlöten detailliert analysiert und bewertet. Aus den Ergebnissen werden Fertigungsstrategien zur Minimierung von Eigenspannungen in gelöteten Mischverbindungen abgeleitet und validiert. Ziel des Projektes ist es, löttechnisch geeignete Konstruktionen und werkstoffangepasste Lötprozesse für die Fertigung von gelöteten Stahlmischverbunden mit minimalen Eigenspannungen zu entwickeln. Die Hersteller sollen damit in die Lage versetzt werden, zukünftig Hybridbauteile aus unterschiedlichen rostfreien Stahlqualitäten auch über eine löttechnische Fertigungsroute prozesssicher herstellen zu können. Insbesondere die ferritischen rostfreien Stähle, die in gelöteten Bauteilen bislang kaum zum Einsatz kommen, werden hierdurch als Konstruktionswerkstoffe weiter an Bedeutung gewinnen
    Jahr: 2018
    Förderung: AiF-FOSTA
    Laufzeit: 01.11.2016-31.10.2018
  • Forschungsvorhaben 07.088 (AiF-Nr. 19.839 N): Cu-Al-Verbundlote
    Mit den Aluminiumbronzen sind Kupferlegierungen bekannt, die eine hervorragende Warmfestigkeit sowie eine hohe Korrosions- und Verzunderungsbeständigkeit aufweisen. Allerdings lassen sich diese Legierungen als Lote z.B. für CrNi-Stähle aufgrund der hohen Sauerstoffaffinität des Aluminiums sehr schlecht bei Ofenlötprozessen verarbeiten. Der Lösungsansatz besteht in der Verwendung von Lotverbunden bestehend aus einem Aluminiumkern und einer Kupferdeckschicht, wobei über das Verhältnis der verwendeten Materialstärken die Zielzusammensetzung vorgegeben ist. Die gewünschte Lotlegierung bildet sich erst "in situ" während des Aufschmelzvorgangs. Die Verbundlotgeometrie sowie die Temperaturführung beim Ofenlöten bestimmen dann in weiten Grenzen die Lötgutmetallurgie und damit die technologischen Eigenschaften der resultierenden Lötverbindung. Diese Abhängigkeiten zu untersuchen und hieraus anwendungsgeeignete Aluminiumbronze-Verbundlote und Ofenlötprozesse zu entwickeln, ist Ziel dieses Projektes. Cu-Al-Lotverbunde lassen sich sowohl als Drähte als auch als Folien herstellen, sodass sie für eine Vielzahl von Lötanwendungen geeignet sind. Profitieren können hiervon sowohl Lothersteller als auch Unternehmen, die Lötbaugruppen aus CrNi-Stählen fertigen, welche im Automobilbau, in der Heiz- und Klimatechnik oder im Apparatebau in unterschiedlichsten Formen und Ausführungen benötigt werden.
    Jahr: 2018
    Förderung: AiF-DVS
    Laufzeit: 01.01.2018-31.12.2019
  • Forschungsvorhaben 07.084 (AiF-Nr. 19.056 BG): Untersuchungen zum Einfluss von Stickstoff in der Lötatmosphäre auf die Lebensdauerfestigkeit Ni-Basis-gelöteter CrNi-Stahl-Verbindungen unter korrosiver Belastung
    Der weitverbreitete Einsatz von Stickstoff als Prozess- oder Kühlgas beim Löten von CrNi-Stählen mit Nickelbasisloten führt mitunter zu massiven Problemen in Hinblick auf die Korrosionsbeständigkeit der hergestellten Lötverbindungen, die offenbar mit einer Aufstickung der Werkstoffe im Bereich der Fügezone zusammenhängt. Im Rahmen des Forschungsvorhabens soll daher aufklärt werden, in welchem Maße und unter welchen Lötprozessbedingungen eine Stickstoffanreicherung im Lötnahtbereich stattfindet und wie dies das Korrosionsverhalten und auch die Lebensdauer der Lötungen beeinflusst. Im Einzelnen wird hierbei untersucht, welcher Zusammenhang zwischen dem Grad der Stickstoffanreicherung und den gewählten Prozessbedingungen beim Löten bestehen, wie sich die unterschiedlichen Aufstickungsgrade auf das elektrochemische Korrosionsverhalten der Lötverbindungen auswirken und welche Folgen der Grad der Aufstickung und die hieraus resultierenden Korrosionsschäden auf die Zeitfestigkeit der Lötverbindungen haben. Aus den Ergebnissen werden für die besagten Ofenlötverfahren Prozessbedingungen abgeleitet, bei denen die aufstickungsbedingte Folgen an den gelöteten Bauteilen vermieden werden können, ohne auf den im Vergleich zu alternativen Prozessgasen (Argon, Wasserstoff) sehr kostengünstigen und sicherheitstechnisch einfach zu handhabenden Stickstoff verzichten zu müssen.
    Jahr: 2018
    Förderung: AiF-DVS
    Laufzeit: 01.04.2016-30.09.2018
  • SPP 2006 CCA-HEA – Teilprojekt 5: Untersuchung des Zusammenhangs zwischen Mikrostruktur und funktionaler Ermüdung in Hochentropie-Formgedächtnislegierungen
    Hochentropie-Formgedächtnislegierungen stellen eine neue, faszinierende Gruppe von funktionalen Materialien dar, die in den verschiedensten Bereichen genutzt werden können. Sie zeigen beispielsweise eine reversible martensitische Transformation bei Temperaturen von über 100°C. Bisher ist allerdings noch wenig über das Vielkomponenten-Material und insbesondere dessen Verhalten während der martensitischen Transformation bekannt. Aus diesem Grund sollen die funktionalen und mechanischen Eigenschaften sowie die Werkstoffermüdung der neuen Legierungen im Rahmen dieses Projektes untersucht werden. Besonderes Augenmerk wird dabei auf den Zusammenhang zwischen lokalen mikrostrukturellen Eigenschaften und makroskopischem Verhalten gelegt.
    Jahr: 2017
    Förderung: DFG
    Laufzeit: 10/2017 – 09/2020
  • Untersuchung des kombinierten Einflusses des Dressierens und Rollenrichtens von Dünnblechen aus Materialien mit unterschiedlichem Kristallgitter
    Die resultierenden Eigenschaften von Blechen werden maßgeblich durch die abschließenden Prozesse des Dressierens und Richtens bestimmt. Das Ziel des Dressierens besteht in der Beseitigung von Lüders-Bändern beispielsweise für einen nachfolgenden Tiefziehprozess durch Überschreiten der Streckgrenze sowie in der Einstellung einer definierten Oberflächentopologie. Zur Erzeugung ebener Blechoberflächen erfolgt ein Richten mit Rollenrichtmaschinen. Die vertikalen Achsen der oberen und unteren Rollen sind dabei gegeneinander versetzt, was eine zyklisch alternierende Biegung des Bleches verursacht. Die Kombination dieser Umformverfahren beeinflusst maßgeblich die finalen Blecheigenschaften (Mikrostruktur, Textur, mechanische Eigenschaften, Eigenspannungen, Ermüdungsfestigkeit), die im Rahmen dieses Projektes charakterisiert und für die Weiterverarbeitung von Blechen mit unterschiedlichen Gitterstrukturen (krz - Stahl, kfz - Kupfer, hdp - Titan) optimiert werden sollen.
    Jahr: 2017
    Förderung: DFG
    Laufzeit: 01.10.2016-30.09.2019
  • Erweiterung der Prozessgrenzen bei der Weiterverarbeitung von gewalztem Halbzeug durch Analyse der Ursache-Wirkungs-Beziehungen beim Planrichten
    Das Ziel dieses Forschungsprojekts liegt in der Erarbeitung eines prozessstufenübergreifenden Prognosemodells zur Beschreibung relevanter Ursachen-Wirkungs-Beziehungen beim Planrichten von Stahl- und Aluminiumhalbzeugen. Die Weiterverarbeitung von gewalzten Bändern in Umform- oder Trennprozessen erfordert einen planen Einlaufzustand mit kontrolliert eingestellten und möglichst homogenen Eigenschaften. Diese geforderten Eigenschaften sind meist, bedingt durch Imperfektionen, die während der Halbzeugherstellung und dem Transport als Coil entstehen, nicht gegeben. Der Prozess des Richtwalzens ermöglicht es, mit einer wechselnden Biegebeanspruchung, das einlaufende Material plan zu richten und die Blecheigenschaften kontrolliert zu beeinflussen. Da sich prozessbedingte Inhomogenitäten des Einlaufmaterials auf die Werkstoffeigenschaften nach dem Richtprozess auswirken, ist eine gezielte Korrektur des Richtprozesses über die abgewickelte Halbzeuglänge notwendig. Durch die Ermittlung aller relevanten Ursachen-Wirkungs-Beziehungen sollen Richtlinien innerhalb eines Prognosemodells für das Planrichten abgeleitet werden, die eine Maximierung der Prozessgrenzen in der jeweiligen nachstehenden Fertigungsstufe erlauben.
    Jahr: 2017
    Förderung: AiF
    Laufzeit: 04/2017 – 03/2019
  • IRTG 1627 – Teilprojekt C5: Virtuelle Gestaltung und Herstellung von belastungsangepassten Rohren
    Steel tubes featuring lengthwise tailored properties are promising for applications where a subsequent deformation requires locally adapted mechanical properties. Within this project suited models to predict both microstructure and mechanical properties due to a new manufacturing process consisting of tube forming, inductive heating and adapted quenching shall be developed. Locally adapted microstructures shall be realized by an intercritical annealing. The models shall be validated at the example of steel tubes manufactured in the workshop.
    Jahr: 2017
    Förderung: DFG
    Laufzeit: 01/10/2016 – 30/09/2019
  • Herstellung und Applikation thermoplastumhüllter Lotpartikel für die löttechnische Fertigung mit pulverförmigen Hartloten
    Im Rahmen dieses Projektes werden Lotpulver untersucht, die mit einer thermoplastischen Umhüllung überzogen sind. Die Partikelumhüllung soll hierbei zwei Aufgaben erfüllen: Zum einen werden die metallischen Lotpartikel mit dem elektrisch nicht leitendem Kunststoff isoliert, sodass es möglich wird, die Partikel elektrostatisch aufzuladen und damit für den Einsatz elektrostatischer Pulverbeschichtungsprozesse als neuartiges, lösungsmittelfreies Lotapplikationsverfahren nutzbar zu machen. Zum anderen soll die Verwendung eines Thermoplasten als Kunststoffumhüllung dazu dienen, (ggf. elektrostatisch abgeschiedenes) Lotpulver durch eine Wärmebehandlung ähnlich dem Einbrennen von Kunststoffpulverbeschichtungen haftfest mit der zu belotenden Oberfläche zu verbinden, um lager- und chargierfähige Vorbelotungen mit Lotpulvern zu erzeugen. Aus wissenschaftlich-technischer Sicht sind hierzu lötprozessgeeignete Thermoplaste zu identifizieren und ein einfaches und wirtschaftliches Verfahren zur Umhüllung der Lotpulver zu entwickeln. Benchmark für die Herstellung und Anwendung der thermoplastumhüllten Pulver ist das für derartige Lötaufgaben bislang eingesetzte Beschichten mit lösungsmittelbasierten, binderhaltigen Lotpulversuspensionen. Es wird erwartet, dass mit thermoplastumhüllten Lotpulvern und deren trockener Applikation substanzielle technische, ökonomische sowie ökologische Vorteile im Vergleich zum Stand der Technik erzielt werden können. Nutzer dieser Technologie sind sowohl Hersteller von Lötprodukten aus Lotpulvern, die hiermit ihr Portfolio erweitern, als auch Anwender von Löttechnologie, denen neue wirtschaftliche Lotapplikationsverfahren mit dem Produkt ermöglicht werden.
    Jahr: 2017
    Förderung: AiF
    Laufzeit: 01.02.2017-31.01.2019